Classical weed biocontrol in Canada: How do new agents happen?

Rose De Clerck-Floate
Rob Bourchier
Lethbridge Research Centre
Classical Weed Biological Control

- Use of host-specific foreign organisms to control invasive alien plants
- Re-establishes ecological interaction

Not for eradication!
Classical Biological Control

- Self-sustaining & dispersing
- Can be very successful
- Cost-effective (e.g., Benefit:Cost of 23:1 in Australia over 100 years)
- Long-term control
Biological control often the only option available for natural areas
Biocontrol agents released against weeds in Canada

- 76 spp introduced against 24 invasive plant spp since 1951
- 73% of released established
- 33% of established successful
Stages of Weed Biocontrol

1. **Species interactions**
2. **Overseas exploration**
3. **Biology/host range studies**
4. **Petition for agent release**
5. **Propagation/field release**
6. **Establishment & impact assessment**
7. **Redistribution & long-term assessment**
Native animals

Biocontrol: Where ecological theory meets applied science

Invasive Plant

Native plants

Native animals

Introduced insects
<table>
<thead>
<tr>
<th>Stages of Weed Biocontrol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Species interactions</td>
</tr>
<tr>
<td>2. Overseas exploration</td>
</tr>
<tr>
<td>3. Biology/host range studies</td>
</tr>
<tr>
<td>4. Petition for agent release</td>
</tr>
<tr>
<td>5. Propagation/field release</td>
</tr>
<tr>
<td>6. Establishment & impact assessment</td>
</tr>
<tr>
<td>7. Redistribution & long-term assessment</td>
</tr>
</tbody>
</table>
Toadflax Project

Ivo Tosevski

Serbian lab

Emily Barnewall

André Gassmann
CABI-Europe
Genotyping of *Mecinus* spp. populations
Eurasia & NA (based on mtDNA COII gene)

Ivo Tosevski & André Gassmann
CABI Europe 2009

ex *Linaria vulgaris*
Swiss & NA

A different *Mecinus* species in Switzerland?

ex *Linaria dalmatica* NA &
dalmatica macedonica

R. antirrhini ex vulgaris
Stages of Weed Biocontrol

1. Species interactions
2. Overseas exploration
3. Biology/host range studies
4. Petition for agent release
5. Propagation/field release
6. Establishment & impact assessment
7. Redistribution & long-term assessment
Testing based on degrees of relatedness

1. Same species as weed
2. Other spp in same
 - genus
 - tribe
 - family
 - order
3. Representatives of other orders and groups more distantly related
Changes in emphasis for pre-release testing

1950-60s – Economic plants
1968 – Plants closely-related to weed
1980s – Related native plants
1990s – Threatened and endangered species
>1995 – Indirect ecological effects
2000s – Pre-testing for agent efficacy
Host Range Testing

- No-choice tests
- Multiple-choice tests
 - Laboratory
 - Field
Insect Microbial Containment Facility

- AAFC, Lethbridge
- 883 m²
- Opened 2004
- For study of biocontrol agents
Stages of Weed Biocontrol

1. Species interactions
2. Overseas exploration
3. Biology/host range studies
4. Petition for agent release
5. Propagation/field release
6. Establishment & impact assessment
7. Redistribution & long-term assessment
Key elements of a regulatory petition for release: Science based

- Proposed action
- Target weed information
- Biocontrol agent information
- Host specificity test results
- Predicted environmental & economic impacts of release
Canadian Petition Review Process

1. Release
2. No Release
3. More research

Petitioner(s)

Petition: NAPPO Standards

CFIA - Director Plant
Biosecurity & Forestry Division

CFIA - Regulatory Entomologists

Chair, Biological Control Review Committee

USA-TAG | BCRC | Mexico

Release recommend

Scientific review
Balancing the Potential Risks and Benefits of Biological Control

Risks

• to non-targets
• other methods of control
• NO CONTROL

Benefits

There is no such thing as zero risk!
Stages of Weed Biocontrol

1. Species interactions
2. Overseas exploration
3. Biology/host range studies
4. Petition for agent release
5. Propagation/field release
6. Establishment & impact assessment
7. Redistribution & long-term assessment

Stolon galls
Stages of Weed Biocontrol

1. Species interactions
2. Overseas exploration
3. Biology/host range studies
4. Petition for agent release
5. Propagation/field release
6. Establishment & impact assessment
7. Redistribution & long-term assessment
Impact of *Aphthona* spp flea beetles on leafy spurge

Soon after release
- Reduced flowering stems
- Spurge mortality
Impact of *Mogulones crucifer* on houndstongue density

1999: year of release of 200 weevils

2001: few houndstongue left!
Stages of Weed Biocontrol

1. Species interactions
2. Overseas exploration
3. Biology/host range studies
4. Petition for agent release
5. Propagation/field release
6. Establishment & impact assessment
7. Redistribution & long-term assessment
Assessing the distribution and abundance of leafy spurge using remote sensing
Post-release population studies:
Target & non-target plants

Houndstongue weevil, *Mogulones crucifer*
on blue stickseed, *Hackelia micrantha*

Haley Catton
UBC Okanagan
Current Targets for Biocontrol & Stage

(1) *Species Interactions*: hawkweeds, Russian olive

(2) & (3) *Exploration & Host-range*: common reed, common tansy, dog-strangling vine, garlic mustard, hawkweeds, Himalayan balsam, knotweeds, ox-eye daisy, Russian olive, toadflaxes

(4) *Petitioning*: dog-strangling vine, garlic mustard, hawkweeds, hoary cress, toadflaxes
Current IP Targets for Biocontrol & Stage

(5) **Agent releases:** hawkweeds, rush skeletonweed, Russian knapweed, tansy ragwort

(6) & (7) **Establishment & Impact assessment, Redistribution:** Dalmatian toadflax, field bindweed, houndstongue, knapweeds, leafy spurge, purple loosestrife, scentless chamomile
Summary

Long term development: 10-15 yrs/weed and ca. $1-2 million to agent release

Typically works slowly: Takes patience!

Success is possible: e.g., leafy spurge, houndstongue, Dalmatian toadflax, diffuse knapweed

New agents coming: e.g., dog-strangling vine, hawkweeds, knotweeds, yellow toadflax

- **Hypena opulenta**
- **Aulacidea spp**
- **Aphlara itadori**
- **Rhinusa spp**